(0) Obligation:
Clauses:
gopher(nil, L) :- ','(!, eq(L, nil)).
gopher(X, Y) :- ','(head(X, nil), ','(!, ','(tail(X, T), eq(Y, cons(nil, T))))).
gopher(X, Y) :- ','(head(X, H), ','(head(H, U), ','(tail(H, V), ','(tail(X, W), gopher(cons(U, cons(V, W)), Y))))).
head([], X1).
head(.(X, X2), X).
tail([], []).
tail(.(X3, X), X).
eq(X, X).
Query: gopher(g,a)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
gopherA(nil, nil).
gopherA([], cons(nil, [])).
gopherA(.(nil, T31), cons(nil, T31)).
gopherA(.(.(T83, T84), T85), T39) :- gopherA(cons(T83, cons(T84, T85)), T39).
Query: gopherA(g,a)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
gopherA_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gopherA_in_ga(nil, nil) → gopherA_out_ga(nil, nil)
gopherA_in_ga([], cons(nil, [])) → gopherA_out_ga([], cons(nil, []))
gopherA_in_ga(.(nil, T31), cons(nil, T31)) → gopherA_out_ga(.(nil, T31), cons(nil, T31))
gopherA_in_ga(.(.(T83, T84), T85), T39) → U1_ga(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
U1_ga(T83, T84, T85, T39, gopherA_out_ga(cons(T83, cons(T84, T85)), T39)) → gopherA_out_ga(.(.(T83, T84), T85), T39)
The argument filtering Pi contains the following mapping:
gopherA_in_ga(
x1,
x2) =
gopherA_in_ga(
x1)
nil =
nil
gopherA_out_ga(
x1,
x2) =
gopherA_out_ga(
x2)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
cons(
x1,
x2) =
cons(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gopherA_in_ga(nil, nil) → gopherA_out_ga(nil, nil)
gopherA_in_ga([], cons(nil, [])) → gopherA_out_ga([], cons(nil, []))
gopherA_in_ga(.(nil, T31), cons(nil, T31)) → gopherA_out_ga(.(nil, T31), cons(nil, T31))
gopherA_in_ga(.(.(T83, T84), T85), T39) → U1_ga(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
U1_ga(T83, T84, T85, T39, gopherA_out_ga(cons(T83, cons(T84, T85)), T39)) → gopherA_out_ga(.(.(T83, T84), T85), T39)
The argument filtering Pi contains the following mapping:
gopherA_in_ga(
x1,
x2) =
gopherA_in_ga(
x1)
nil =
nil
gopherA_out_ga(
x1,
x2) =
gopherA_out_ga(
x2)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
cons(
x1,
x2) =
cons(
x1,
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOPHERA_IN_GA(.(.(T83, T84), T85), T39) → U1_GA(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
GOPHERA_IN_GA(.(.(T83, T84), T85), T39) → GOPHERA_IN_GA(cons(T83, cons(T84, T85)), T39)
The TRS R consists of the following rules:
gopherA_in_ga(nil, nil) → gopherA_out_ga(nil, nil)
gopherA_in_ga([], cons(nil, [])) → gopherA_out_ga([], cons(nil, []))
gopherA_in_ga(.(nil, T31), cons(nil, T31)) → gopherA_out_ga(.(nil, T31), cons(nil, T31))
gopherA_in_ga(.(.(T83, T84), T85), T39) → U1_ga(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
U1_ga(T83, T84, T85, T39, gopherA_out_ga(cons(T83, cons(T84, T85)), T39)) → gopherA_out_ga(.(.(T83, T84), T85), T39)
The argument filtering Pi contains the following mapping:
gopherA_in_ga(
x1,
x2) =
gopherA_in_ga(
x1)
nil =
nil
gopherA_out_ga(
x1,
x2) =
gopherA_out_ga(
x2)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
cons(
x1,
x2) =
cons(
x1,
x2)
GOPHERA_IN_GA(
x1,
x2) =
GOPHERA_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x5)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOPHERA_IN_GA(.(.(T83, T84), T85), T39) → U1_GA(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
GOPHERA_IN_GA(.(.(T83, T84), T85), T39) → GOPHERA_IN_GA(cons(T83, cons(T84, T85)), T39)
The TRS R consists of the following rules:
gopherA_in_ga(nil, nil) → gopherA_out_ga(nil, nil)
gopherA_in_ga([], cons(nil, [])) → gopherA_out_ga([], cons(nil, []))
gopherA_in_ga(.(nil, T31), cons(nil, T31)) → gopherA_out_ga(.(nil, T31), cons(nil, T31))
gopherA_in_ga(.(.(T83, T84), T85), T39) → U1_ga(T83, T84, T85, T39, gopherA_in_ga(cons(T83, cons(T84, T85)), T39))
U1_ga(T83, T84, T85, T39, gopherA_out_ga(cons(T83, cons(T84, T85)), T39)) → gopherA_out_ga(.(.(T83, T84), T85), T39)
The argument filtering Pi contains the following mapping:
gopherA_in_ga(
x1,
x2) =
gopherA_in_ga(
x1)
nil =
nil
gopherA_out_ga(
x1,
x2) =
gopherA_out_ga(
x2)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
cons(
x1,
x2) =
cons(
x1,
x2)
GOPHERA_IN_GA(
x1,
x2) =
GOPHERA_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x5)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 0 SCCs with 2 less nodes.
(8) TRUE